The investigation of in-vitro response of cell cultures derived from tumor material of individual patients with similar tumor localizations to photodynamic treatment is presented. Tumor types included in the research were renal cell carcinoma, melanoma and alveolar, synovial, lypo- and osteo- sarcomas. Long-term observations of treatment-induced morphological changes in cells were performed by means of digital holographic microscopy. A substantial variance in response of cells of individual patients with similar tumor types and localizations to photodynamic treatment with the same dose has been observed. These peculiarities are indicative of the demand to personalized protocols of photodynamic treatment. The elevated resistance of cells of some patients to treatment at high doses highlights potential limitations of photodynamic therapy for some patients. Digital holographic microscopy is shown to be an informative label-free noninvasive tool allowing for long-term monitoring of cell samples in vitro and providing quantitative information on necrosis rate and loss of cellular dry mass. The developed methodology can be generalized for analysis of cellular response to various therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2021.112235 | DOI Listing |
Turk J Chem
October 2024
Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkiye.
A new nonperipheral zinc(II) phthalocyanine bearing octa carboxylic acid ethyl ester derivative substituted triazole attached propylmercaptothiobenzylmercapto derivative was synthesized via the tetramerization reaction of phthalonitrile. The photochemical in vitro photodynamic activity of zinc(II) phthalocyanine (), such as human nonsmall cell lung carcinoma cell lines, was investigated in this study. The singlet oxygen generation property of novel zinc(II) phthalocyanine () was also examined due to the significantly high singlet oxygen quantum yield of (F = 0.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Universidad de Murcia, Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design π-extension and donor-acceptor interactions.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFSmall
January 2025
Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning, Nanjing, 210009, China.
Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!