Industrial passive low-back exoskeletons have gained recent attention as ergonomic interventions to manual handling tasks. This research utilized a two-armed experimental approach (single vs dual-task paradigms) to quantify neural and biomechanical tradeoffs associated with short-term human-exoskeleton interaction (HEI) during asymmetrical lifting in twelve healthy adults balanced by gender. A dynamic, electromyography-assisted spine model was employed that indicated statistical, but marginal, biomechanical benefits of the tested exoskeleton, which diminished with the introduction of the cognitive dual-task. Using Near Infrared Spectroscopy (fNIRS)-based brain connectivity analyses, we found that the tested exoskeleton imposed greater neurocognitive and motor adaptation efforts by engaging action monitoring and error processing brain networks. Collectively, these findings indicate that a wearer's biomechanical response to increased cognitive demands in the workplace may offset the mechanical advantages of exoskeletons. We also demonstrate the utility of ambulatory fNIRS to capture the neural cost of HEI without the need for elaborate dual-task manipulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apergo.2021.103494 | DOI Listing |
J R Soc Interface
January 2025
Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.
View Article and Find Full Text PDFBiomater Transl
November 2024
Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China.
The convergence of organoid technology and artificial intelligence (AI) is poised to revolutionise oral healthcare. Organoids - three-dimensional structures derived from human tissues - offer invaluable insights into the complex biology of diseases, allowing researchers to effectively study disease mechanisms and test therapeutic interventions in environments that closely mimic in vivo conditions. In this review, we first present the historical development of organoids and delve into the current types of oral organoids, focusing on their use in disease models, regeneration and microbiome intervention.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
: Toe flexor strength (TFS) has been determined to evaluate the toe flexor muscle function. However, it is unclear how strength and size relationships of toe flexor muscles vary depending on the toes intended for force production. We aimed to clarify this by examining the relationship between TFS and toe flexor muscle size, and hypothesized TFS produced by all toes (TFS-All), the great toe (TFS-Great) and lesser toes (TFS-Lesser) would be specifically associated with the size of the muscles specialized in each corresponding toe flexion.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.
Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.
JOR Spine
March 2025
Spine Labs St George and Sutherland Clinical School, University of New South Wales Kogarah New South Wales Australia.
Background: Pain of a chronic nature remains the foremost concern in tertiary spine clinics, yet its elusive nature and quantification challenges persist. Despite extensive research and education on low back pain (LBP), the realm of diagnostic practices lacks a unified approach. Clinically, LBP exhibits a multifaceted character, encompassing conventional assessments of severity and disability, alongside nuanced attributes like pain characterization, duration, and patient expectations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!