Drug efficacy assessment without using animals is important for development of cardiac fibrosis treatment. In this study, potential anti-fibrotic drugs were screened in a model of diseased myocardium using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and non-CM in in vitro and in vivo heart failure models. Cardiomyogenic differentiation was induced in hiPSC to generate cardiac tissue, including both iPSC-CM and non-CM expressing fibroblast markers. Stimulation with TGF-β significantly increased cardiac fibrotic extracellular matrix (ECM) gene expression, and decreased cardiac contractile/relaxation velocity. Anti-fibrotic HGF significantly decreased fibrotic changes induced by TGF-β. A prostacyclin agonist, ONO-1301 (ONO), camostat mesilate (Cs), and pirfenidone (Pf) significantly decreased fibrotic ECM expression, and improved contraction/relaxation in the model stimulated with TGF-β. Consistent with the in vitro assay, the administration of ONO, Cs, or Pf for 8 weeks in J2N-k hamsters preserved the left ventricular ejection fraction and decreased cardiac fibrosis compared with the controls. The in vitro model simulating fibrotic cardiac tissue showed precise screening of anti-fibrotic drugs which indicated the expected therapeutic response in an in vivo heart failure model, suggesting that the in vitro model presented in this study is a useful tool for the screening of anti-fibrotic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2021.102420 | DOI Listing |
Cardiol Res Pract
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran.
Nondilated left ventricular cardiomyopathy (NDLVC) is a newly defined category of cardiomyopathy. We sought to evaluate and compare the phenotype of NDLVC with DCM using cardiac magnetic resonance (CMR) imaging and to investigate the prognostic significance of these conditions. One hundred and fifty patients suspected of having cardiomyopathy referred for CMR were recruited.
View Article and Find Full Text PDFJ Pathol
January 2025
Cardiorenal Translational Laboratory, Imas12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain.
Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Electronic address:
Background: Patients after kidney transplantation (KTx) in childhood show a high prevalence of cardiac complications, but the underlying mechanism is still poorly understood. In adults, myocardial fibrosis detected in cardiac magnetic resonance (CMR) imaging is already an established risk factor. Data for children after KTx are not available.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Cardiology Department, Tulane University School of Medicine, New Orleans, Louisiana, United States. Electronic address:
Background: Causal machine learning (ML) provides an efficient way of identifying heterogeneous treatment effect groups from hundreds of possible combinations, especially for randomized trial data.
Objective: The aim of this paper is to illustrate the potential of applying causal ML on the DECAAF II trial data. We proposed a causal ML model to predict the treatment response heterogeneity.
Proc Natl Acad Sci U S A
January 2025
Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030.
Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!