Combined application of rhamnolipid and agricultural wastes enhances PAHs degradation via increasing their bioavailability and changing microbial community in contaminated soil.

J Environ Manage

College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China. Electronic address:

Published: September 2021

Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHs-contaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.36%) or maize straw (YR, 30.76%) significantly enhanced the degradation of soil PAHs compared with single application of mushroom substrate (M, 25.53%) or maize straw (Y, 25.77%) or no addition (19.38%). The addition of agricultural wastes significantly (p < 0.001) enhanced concentration of dissolved organic carbon (DOC) in soil. The combined application obviously improved the bioavailability of PAHs in soils and exhibited synergistic effects on concentration of organic acid-soluble HMW PAHs and the degradation rate of total HMW PAHs. Meanwhile, the combined application significantly (p < 0.01) enhanced the abundance of dominant bacterial and fungal genera being connected with PAHs degradation. The removal rate of PAHs was positively correlated with the dominant genera of bacteria (r = 0.539-0.886, p < 0.05) and fungi (r = 0.526-0.867, p < 0.05) related to PAHs degradation. Overall, the combined application exhibited a better performance in the removal of PAHs in contaminated soil via increasing their bioavailability and changing microbial communities in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112998DOI Listing

Publication Analysis

Top Keywords

agricultural wastes
20
mushroom substrate
12
maize straw
12
combined application
8
biosurfactants agricultural
8
agricultural
5
wastes
5
application rhamnolipid
4
rhamnolipid agricultural
4
wastes enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!