Aeglids are unique freshwater decapods whose habitats are being impacted by metallic compounds, such as copper (Cu). Thus, we investigated the effects of acute Cu exposure on ionic regulation of Aegla castro. For this, male specimens in intermolt were collected from a reference stream and acclimated for 5 days in laboratory. After which, crabs were exposed to 11 μg L Cu (Cu11) or only to water (CTR) for 24 h. Hemolymph samples were withdrawn for the determination of Na, K, Ca, and Mg concentrations and the posterior gills removed for the analysis of Na/K-ATPase, Ca-ATPase, H-ATPase, and carbonic anhydrase (CA) activities. Increased Ca and Mg hemolymph concentrations were observed in animals from Cu11, when compared with CTR group. In addition, decreased activity of CA was observed in animals exposed to Cu. In the current study, alterations in Ca and Mgconcentrations probably indicate that animals activated exoskeleton reabsorption mechanisms, characteristic of the premolt. Therefore, increased Ca and Mg concentrations in hemolymph may indicate that a biochemical signal associated with the molting cycle was triggered by Cu exposure. Despite the known harmful effects of Cu on osmoregulatory enzymes, here we observed decreased activity only in CA. However, decreased activity of CA could trigger both acid-base imbalance and ionic disruption, since CA provides H and HCO for intracellular pH maintenance, and underpins Na and Cl for ionic regulation. Therefore, understanding how aeglids respond to metal contamination in laboratory conditions is crucial to assess their potential as an alternative biological model for aquatic ecotoxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2021.109106 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.
The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States.
The fungal metabolite verticillin A is a potent and selective histone methyltransferase inhibitor. It regulates apoptosis, the cell cycle, and stress response, and displays potent activity in the suppression of tumor cell growth in several different in vivo models. Verticillin A sensitizes pancreatic cancer cells to anti-PD-1 immunotherapy by regulating PD-L1 expression.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!