A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training. | LitMetric

Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training.

Int J Biol Macromol

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China. Electronic address:

Published: August 2021

To develop the hydrogels with high mechanical strength and excellent conductivity is always a challenging topic. In this study, the ultra-strong hydroxypropyl cellulose (HPC)/polyvinyl alcohol (PVA) composite hydrogels were prepared by combination of the triple-network and mechanical training. The proposed composite hydrogels were achieved by physically crosslinking HPC with PVA to form the first crosslinking network, in which the HPC fibers could decrease the crosslinking density of PVA matrix and generate a lot of water-rich porous area. Then, 2-hydroxyethyl acrylate (HEA), acrylamide (AM) and aluminium chloride diffused into the first network to fabricate the chemical crosslinking network and ionically cross-linked domains. The formation of triple-network enhanced the mechanical strength and toughness to 1.87 MPa and 339.09 kJ/m, respectively. Especially, the crystalline domains of PVA chains could improve the hydrogel's fatigue resistance, and the orderly arrangement of the crystalline domains achieved through mechanical training process could further enhance the mechanical strength. The mechanical strength of pre-stretched composite hydrogel was increased up to 2.8 MPa. The composite hydrogels exhibit great applications in sensors, human-machine interactions, and wearable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.06.054DOI Listing

Publication Analysis

Top Keywords

mechanical strength
16
mechanical training
12
composite hydrogels
12
ultra-strong hydroxypropyl
8
composite hydrogel
8
combination triple-network
8
triple-network mechanical
8
crosslinking network
8
crystalline domains
8
mechanical
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!