As the emerging contaminants, the behavior and fate of microplastics (MPs) were highly related to the interactions with surrounding organic matters. However, information on the effects of molecular sizes of organic matters on the interaction is still lacking. In this study, the bulk algal-derived organic matter (AOM) samples were obtained and further fractionated into high molecular weight (HMW-, 1kDa-0.45 μm) and low molecular weight (LMW-, < 1 kDa) fractions. The interaction between MPs [polyethylene (PE) and polystyrene (PS)] and these MW-fractionated AOMs were characterized by dissolved organic carbon, fluorescence and absorbance spectroscopy, and fourier transform infrared (FTIR) analysis. Results showed that presence of AOM could effectively inhibit the release of additives from MPs. Further analysis found that the inhibition extents decreased in the order of HMW- > bulk > LMW-AOM. The absorbance and fluorescence spectroscopy showed that aromatic protein-like substances in HMW fraction exhibited higher adsorption affinity to MPs than the bulk and LMW counterparts. The strong sorption of aromatic substances may offer more binding sites for additives to inhibit the release of organic substances. Moreover, two dimensional FTIR correlation spectroscopy revealed that the HMW non-aromatic substances were preferentially adsorbed onto PS, which led to an enhanced adsorption capacity to additives by forming H-bonding. Therefore, the MW- and component-dependent heterogeneities of AOM samples must be fully considered in evaluating the environmental behavior of MPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111424DOI Listing

Publication Analysis

Top Keywords

organic matters
12
organic substances
8
aom samples
8
molecular weight
8
inhibit release
8
organic
7
substances
5
mps
5
release inhibition
4
inhibition organic
4

Similar Publications

This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.

View Article and Find Full Text PDF

Sustainable decentralized food waste composting using a pulse alternating ventilation pilot-scale device: Case study based on LCA and LCC analysis.

Bioresour Technol

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China. Electronic address:

Currently few efficient decentralized composting reactors have been developed, and there is also little exploration into their comprehensive environmental impact and carbon emissions. This study developed a continuous pulse alternating ventilation composting pilot device, SC-PAVCR. Results demonstrated that SC-PAVCR effectively maintained the thermophilic phase during the 120-day operation period.

View Article and Find Full Text PDF

Long-term exposure to PM and its constituents and visual impairment in schoolchildren: A population-based survey in Guangdong province, China.

Environ Int

January 2025

Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 China. Electronic address:

Background: Exposure to fine particulate matter (PM) has been linked to visual impairment. Nevertheless, evidence associating PM constituents with visual impairment in schoolchildren is sparse.

Objectives: To explore the effects of long-term exposure to PM and its constituents on visual impairment.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!