Significant progress has been made for face detection from normal images in recent years; however, accurate and fast face detection from fisheye images remains a challenging issue because of serious fisheye distortion in the peripheral region of the image. To improve face detection accuracy, we propose a light-weight location-aware network to distinguish the peripheral region from the central region in the feature learning stage. To match the face detector, the shape and scale of the anchor (bounding box) is made location dependent. The overall face detection system performs directly in the fisheye image domain without rectification and calibration and hence is agnostic of the fisheye projection parameters. Experiments on Wider-360 and real-world fisheye images using a single CPU core indeed show that our method is superior to the state-of-the-art real-time face detector RFB Net.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3087400DOI Listing

Publication Analysis

Top Keywords

face detection
20
detection fisheye
8
fisheye image
8
image domain
8
fisheye images
8
peripheral region
8
face detector
8
fisheye
6
face
6
detection
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!