With substantial amount of time, resources and human (team) efforts invested to explore and develop successful deep neural networks (DNN), there emerges an urgent need to protect these inventions from being illegally copied, redistributed, or abused without respecting the intellectual properties of legitimate owners. Following recent progresses along this line, we investigate a number of watermark-based DNN ownership verification methods in the face of ambiguity attacks, which aim to cast doubts on the ownership verification by forging counterfeit watermarks. It is shown that ambiguity attacks pose serious threats to existing DNN watermarking methods. As remedies to the above-mentioned loophole, this paper proposes novel passport-based DNN ownership verification schemes which are both robust to network modifications and resilient to ambiguity attacks. The gist of embedding digital passports is to design and train DNN models in a way such that, the DNN inference performance of an original task will be significantly deteriorated due to forged passports. In other words, genuine passports are not only verified by looking for the predefined signatures, but also reasserted by the unyielding DNN model inference performances. Extensive experimental results justify the effectiveness of the proposed passport-based DNN ownership verification schemes. Code is available at https://github.com/kamwoh/DeepIPR.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3088846DOI Listing

Publication Analysis

Top Keywords

ownership verification
20
dnn ownership
12
ambiguity attacks
12
deep neural
8
dnn
8
passport-based dnn
8
verification schemes
8
ownership
5
verification
5
deepipr deep
4

Similar Publications

Computational nuclear oncology for precision radiopharmaceutical therapy (RPT) is a new frontier for theranostic treatment personalization. A key strategy relies on the possibility to incorporate clinical, biomarker, image-based, and dosimetric information in theranostic digital twins (TDTs) of patients to move beyond a one-size-fits-all approach. The TDT framework enables treatment optimization by real-time monitoring of the real-world system, simulation of different treatment scenarios, and prediction of resulting treatment outcomes, as well as facilitating collaboration and knowledge sharing among health care professionals adopting a harmonized TDT.

View Article and Find Full Text PDF

Objectives: Multiplex immunohistochemistry and immunofluorescence (mIHC/IF) are emerging technologies that can be used to help define complex immunophenotypes in tissue, quantify immune cell subsets, and assess the spatial arrangement of marker expression. mIHC/IF assays require concerted efforts to optimize and validate the multiplex staining protocols prior to their application on slides. The best practice guidelines for staining and validation of mIHC/IF assays across platforms were previously published by this task force.

View Article and Find Full Text PDF

Cherenkov imaging during radiotherapy provides a real time visualization of beam delivery on patient tissue, which can be used dynamically for incident detection or to review a summary of the delivered surface signal for treatment verification. Very few photons form the images, and one limitation is that the noise level per frame can be quite high, and mottle in the cumulative processed images can cause mild overall noise. This work focused on removing or suppressing noise via image postprocessing.

View Article and Find Full Text PDF

Clinical trial matching is the task of identifying trials for which patients may be eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process also results in many patients missing out on potential therapeutic options.

View Article and Find Full Text PDF

iSeq: an integrated tool to fetch public sequencing data.

Bioinformatics

November 2024

Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.

Motivation: High-throughput sequencing technologies [next-generation sequencing (NGS)] are increasingly used to address diverse biological questions. Despite the rich information in NGS data, particularly with the growing datasets from repositories like the Genome Sequence Archive (GSA) at NGDC, programmatic access to public sequencing data and metadata remains limited.

Results: We developed iSeq to enable quick and straightforward retrieval of metadata and NGS data from multiple databases via the command-line interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!