Association of retinal atrophy with cortical lesions and leptomeningeal enhancement in multiple sclerosis on 7T MRI.

Mult Scler

Baltimore VA Medical Center, Baltimore, MD, USA/University of Maryland Medical Center, Baltimore, MD, USA/Johns Hopkins University School of Medicine, Baltimore, MD, USA/Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.

Published: March 2022

Background: Retinal atrophy in multiple sclerosis (MS) as measured by optical coherence tomography (OCT) correlates with demyelinating lesions and brain atrophy, but its relationship with cortical lesions (CLs) and meningeal inflammation is not well known.

Objectives: To evaluate the relationship of retinal layer atrophy with leptomeningeal enhancement (LME) and CLs in MS as visualized on 7 Tesla (7T) magnetic resonance imaging (MRI).

Methods: Forty participants with MS underwent 7T MRI of the brain and OCT. Partial correlation and mixed-effects regression evaluated relationships between MRI and OCT findings.

Results: All participants had CLs and 32 (80%) participants had LME on post-contrast MRI. Ganglion cell/inner plexiform layer (GCIPL) thickness correlated with total CL volume ( =-0.45,  < 0.01). Participants with LME at baseline had thinner macular retinal nerve fiber layer (mRNFL;  = 0.01) and GCIPL ( < 0.01). Atrophy in various retinal layers was faster in those with certain patterns of LME. For example, mRNFL declined -1.113 (-1.974, -0.252) μm/year faster in those with spread/fill-pattern LME foci at baseline compared with those without ( = 0.01).

Conclusion: This study associates MRI findings of LME and cortical pathology with thinning of retinal layers as measured by OCT, suggesting a common link between meningeal inflammation, CLs, and retinal atrophy in MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669055PMC
http://dx.doi.org/10.1177/13524585211023343DOI Listing

Publication Analysis

Top Keywords

retinal atrophy
8
cortical lesions
8
leptomeningeal enhancement
8
multiple sclerosis
8
association retinal
4
atrophy
4
atrophy cortical
4
lesions leptomeningeal
4
enhancement multiple
4
mri
4

Similar Publications

Purpose: The purpose of this study was o examine the optical coherence tomographic (OCT) characteristics of hyper-reflective foci (HRF) in patients with neovascular age-related macular degeneration (nAMD) and to assess the potential of HRF as a predictive factor for the development of macular atrophy following anti-vascular endothelial growth factor (anti-VEGF) therapy.

Methods: This was a retrospective analysis of 61 treatment-naïve eyes diagnosed with exudative AMD and type 1 macular neovascularization (MNV). The HRF was identified in the inner retina and outer retina layers, and the treatment response of HRF was documented.

View Article and Find Full Text PDF

Posterior segment findings in a patient with a biallelic pathogenic variant.

Am J Ophthalmol Case Rep

December 2024

Genomic Laboratory, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.

Purpose: To report the posterior segment findings in a case with a biallelic frameshift pathogenic variant at chromosome 10 c.616del exon7 p.(His206Thrfs∗61).

View Article and Find Full Text PDF

The aim of the study was to determine the thickness of choroidal layers in mixed breed dogs suffering from retinal atrophy (RA) and showing symptoms of progressive retinal atrophy (PRA), with the use of SD-OCT. The study was performed on 50 dogs divided into two groups: 25 dogs diagnosed with retinal atrophy (RA) with PRA symptoms aged 1.5-14 years and 25 healthy dogs aged 2-12 years.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus (HIV) is a lentivirus. It is transmitted through sexual intercourse, shared intravenous drugs, contaminated needle use, blood transfusion, and mother-to-child transmission. Of the patients with HIV, 50%-75% have ocular manifestations and this may be the primary presentation.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!