A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simple MoS-Nanofiber Paper-Based Fluorescence Immunosensor for Point-of-Care Detection of Programmed Cell Death Protein 1. | LitMetric

Simple MoS-Nanofiber Paper-Based Fluorescence Immunosensor for Point-of-Care Detection of Programmed Cell Death Protein 1.

Anal Chem

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

Published: June 2021

Programmed cell death protein 1 (PD-1) is one of the coinhibitory checkpoints upon T cell activation, the abnormal expression of which severely threatens host immune modulatation for chronic infection. Thus, fast and sensitive monitoring of PD-1 is of vital importance for early diagnosis and cancer treatment. The current detection methods largely based on enzyme-linked immunosorbent assay (ELISA) require time-consuming incubation and complicated washing steps. Herein, we designed a simple and portable nanofiber paper (NFP)-based fluorescence "off-on" immunosensor for PD-1 rapid determination. Molybdenum disulfide (MoS) nanosheets modified NFP (MoS-NFP) was employed for adsorbing and immobilizing CdSe/ZnS quantum dots-antibody (QDs-Ab) complex to construct a ready-to-use fluorescent immunosensor. The fluorescent signal of QDs-Ab was initially quenched by MoS under the Förster resonance energy transfer (FRET) effect. When the PD-1 target was specifically captured onto NFP by immunization, the QDs-Ab-PD-1 complex was promptly desorbed from the MoS-NFP surface, resulting in FRET impediment and fluorescence recovery. As an alternative quenching agent, graphene oxide (GO) served as a contrast to investigate NFP-based sensing performance. Owing to superior quenching and desorption efficiency, the MoS-NFP-based fluorescence immunosensor exhibited nearly 2-fold lower detection limit (85.5 pg/mL) than GO-NFP-based sensor (151 pg/mL) for PD-1 monitoring. Excellent selectivity and satisfactory recovery in PD-1 mouse cell culture supernatant samples were confirmed as well. In addition, the comparable detectability of the MoS-NFP-based immunosensor was accurately evaluated by a standard PD-1 mouse ELISA kit. This study displayed a simple, rapid, low-cost, and portable point-of-care PD-1 assay, indicating its broad application prospect toward clinical diagnoses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00269DOI Listing

Publication Analysis

Top Keywords

fluorescence immunosensor
8
programmed cell
8
cell death
8
death protein
8
pd-1
8
pd-1 mouse
8
immunosensor
5
simple mos-nanofiber
4
mos-nanofiber paper-based
4
fluorescence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!