Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This study aimed to assess the error of different registration techniques and imaging modalities for fusion imaging of the aorta in a standardized setting using a anthropomorphic body phantom.
Materials And Methods: A phantom with the 3D printed vasculature of a patient suffering from an infrarenal aortic aneurysm was constructed. Pulsatile flow was generated via an external pump. CTA/MRA of the phantom was performed, and a virtual 3D vascular model was computed. Subsequently, fusion imaging was performed employing 3D-3D and 2D-3D registration techniques. Accuracy of the registration was evaluated from 7 right/left anterior oblique c-arm angulations using the agreement of centerlines and landmarks between the phantom vessels and the virtual 3D virtual vascular model. Differences between imaging modalities were assessed in a head-to-head comparison based on centerline deviation. Statistics included the comparison of means ± standard deviations, student's t-test, Bland-Altman analysis, and intraclass correlation coefficient for intra- and inter-reader analysis.
Results: 3D-3D registration was superior to 2D-3D registration, with the highest mean centerline deviation being 1.67 ± 0.24 mm compared to 4.47 ± 0.92 mm. The highest absolute deviation was 3.25 mm for 3D-3D and 6.25 mm for 2D-3D registration. Differences for all angulations between registration techniques reached statistical significance. A decrease in registration accuracy was observed for c-arm angulations beyond 30° right anterior oblique/left anterior oblique. All landmarks (100%) were correctly positioned using 3D-3D registration compared to 81% using 2D-3D registration. Differences in accuracy between CT and MRI were acceptably small. Intra- and inter-reader reliability was excellent.
Conclusion: In the realm of registration techniques, the 3D-3D method proved more accurate than did the 2D-3D method. Based on our data, the use of 2D-3D registration for interventions with high registration quality requirements (e.g., fenestrated aortic repair procedures) cannot be fully recommended. Regarding imaging modalities, CTA and MRA can be used equivalently.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200901 | PMC |
http://dx.doi.org/10.1186/s42155-021-00234-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!