The in-depth knowledge of lipid biological functions needs a comprehensive structural annotation including a method to locate fatty acid unsaturations, which remains a thorny problem. For this purpose, we have associated Grubbs' cross-metathesis reaction and liquid chromatography hyphenated to tandem mass spectrometry to locate double bond positions in lipid species. The pretreatment of lipid-containing samples by Grubbs' catalyst and an appropriate alkene generates substituted lipids through cross-metathesis reaction under mild, chemoselective, and reproducible conditions. A systematic LC-MS/MS analysis of the reaction mixture allows locating unambiguously the double bonds in fatty acid side chains of phospholipids, glycerolipids, and sphingolipids. This method has been successfully applied at a nanomole scale to commercial standard mixtures consisting of 10 lipid subclasses as well as in lipid extracts of human corneal epithelial (HCE) cell line allowing to pinpoint double bond of more than 90 species. This method has also been useful to investigate the lipid homeostasis alteration in an in vitro model of corneal toxicity, i.e., HCE cells incubated with benzalkonium chloride. The association of cross-metathesis and tandem mass spectrometry appears suitable to locate double bond positions in lipids involved in relevant biological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-021-03438-wDOI Listing

Publication Analysis

Top Keywords

cross-metathesis reaction
12
mass spectrometry
12
double bond
12
vitro model
8
model corneal
8
corneal toxicity
8
fatty acid
8
tandem mass
8
locate double
8
bond positions
8

Similar Publications

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Synthesis of value-added products from post-consumer waste polyolefins is fascinating as well as challenging. Here we report ruthenium-catalyzed up-cycling of the polyethylene to long-chain alkene derivatives. The developed methodology mainly involves two steps i.

View Article and Find Full Text PDF

A Hoveyda-Grubbs (HG)-type olefin metathesis complex with a selenoether moiety at the terminus of phenoxy moiety was synthesized. The complex showed direct selenium-atom coordination to the ruthenium center, resulting in higher thermodynamic stability compared with the parent HG catalyst. The selenium atom binding enhanced the tolerance to protic solvent molecules in ring-closing metathesis of -tosyldiallylamide and diethyl diallylmalonate, and also in the cross metathesis between 3-butenylbenzoate and methyl acrylate.

View Article and Find Full Text PDF

A concise synthetic route to an epimer of the recently isolated biologically active cyclic tetrapeptide koshidacin B has been developed, which featured a late-stage functionalization of a macrocyclic scaffold through a cross metathesis reaction. The synthetic 9--koshidacin B showed marginal differences in spectroscopic behavior with that of the natural product but exhibited conformational preferences similar to those reported for analogous substrate chlamydocin. Moreover, it exhibited a useful level of selective inhibition of biologically relevant enzyme histone deacetylase 1 with an IC value of 0.

View Article and Find Full Text PDF

Activation of Methyltrioxorhenium for Olefin Metathesis by a Frustrated Lewis Pair.

J Am Chem Soc

December 2024

Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland.

Methyltrioxorhenium (MTO) supported on AlO or SiO-AlO is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C-H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!