Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbial communities affect many facets of human health and well-being. Naturally occurring bacteria, whether in nature or the human body, rarely exist in isolation. A deeper understanding of the metabolic functions of these communities is now possible with emerging computational models. In this review, we summarize frameworks for constructing mechanistic models of microbial community metabolism and discuss available algorithms for model analysis. We highlight essential decision points that greatly influence algorithm selection, as well as model analysis. Polymicrobial metabolic models can be utilized to gain insights into host-pathogen interactions, bacterial engineering, and many more translational applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202304 | PMC |
http://dx.doi.org/10.1039/d0mo00154f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!