A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic Cooperativity of Ligand-Residue Interactions Evaluated with the Fragment Molecular Orbital Method. | LitMetric

Dynamic Cooperativity of Ligand-Residue Interactions Evaluated with the Fragment Molecular Orbital Method.

J Phys Chem B

Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

Published: June 2021

By the splendid advance in computation power realized with the Fugaku supercomputer, it has become possible to perform ab initio fragment molecular orbital (FMO) calculations for thousands of dynamic structures of protein-ligand complexes in a parallel way. We thus carried out electron-correlated FMO calculations for a complex of the 3C-like (3CL) main protease (M) of the new coronavirus (SARS-CoV-2) and its inhibitor N3 incorporating the structural fluctuations sampled by classical molecular dynamics (MD) simulation in hydrated conditions. Along with a statistical evaluation of the interfragment interaction energies (IFIEs) between the N3 ligand and the surrounding amino-acid residues for 1000 dynamic structure samples, in this study we applied a novel approach based on principal component analysis (PCA) and singular value decomposition (SVD) to the analysis of IFIE data in order to extract the dynamically cooperative interactions between the ligand and the residues. We found that the relative importance of each residue is modified via the structural fluctuations and that the ligand is bound in the pharmacophore in a dynamic manner through collective interactions formed by multiple residues, thus providing new insight into structure-based drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c03043DOI Listing

Publication Analysis

Top Keywords

fragment molecular
8
molecular orbital
8
fmo calculations
8
structural fluctuations
8
dynamic
4
dynamic cooperativity
4
cooperativity ligand-residue
4
ligand-residue interactions
4
interactions evaluated
4
evaluated fragment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!