Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences. In addition, PHCP, TTCP, and AVCP and their variants with altered stability similarly bound nitric oxide and carbon oxide, but not oxygen. Therefore, the thermal stability of TTCP together with PHCP and AVCP can be tuned through specific interactions around the heme without affecting their gas-binding function. These cytochromes c' will be useful as specific gas sensor proteins exhibiting a wide thermal stability range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbab108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!