Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Douglas Channel and the adjacent Hecate Strait (British Columbia, Canada) are part of a proposed route to ship diluted bitumen (dilbit). This study presents how two types of dilbit naturally degrade in this environment by using an in situ microcosm design based on dilbit-coated beads. We show that dilbit-associated n-alkanes were microbially biodegraded with estimated half-lives of 57-69 days. n-Alkanes appeared to be primarily degraded using the aerobic alkB, ladA and CYP153 pathways. The loss of dilbit polycyclic aromatic hydrocarbons (PAHs) was slower than of n-alkanes, with half-lives of 89-439 days. A biodegradation of PAHs could not be conclusively determined, although a significant enrichment of the phnAc gene (a marker for aerobic PAH biodegradation) was observed. PAH degradation appeared to be slower in Hecate Strait than in Douglas Channel. Microcosm-associated microbial communities were shaped by the presence of dilbit, deployment location and incubation time but not by dilbit type. Metagenome-assembled genomes of putative dilbit-degraders were obtained and could be divided into populations of early, late and continuous degraders. The majority of the identified MAGs could be assigned to the orders Flavobacteriales, Methylococcales, Pseudomonadales and Rhodobacterales. A high proportion of the MAGs represent currently unknown lineages or lineages with currently no cultured representative.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213973 | PMC |
http://dx.doi.org/10.1093/femsec/fiab082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!