Transplantation of hydrogel-encapsulated pancreatic islets is a promising long-term treatment for type 1 diabetes that restores blood glucose regulation while providing graft immunoprotection. Most human-scale islet encapsulation devices that rely solely on diffusion fail to provide sufficient surface area to meet islet oxygen demands. Perfused macroencapsulation devices use blood flow to mitigate oxygen limitations but increase the complexity of blood-device interactions. Here we describe a human-scale perfusion system to study hemocompatibility and performance of islet-like cell clusters (ILCs) in alginate hydrogel. A cylindrical perfusion device was designed for multi-day culture without leakage, contamination, or flow occlusion. Rat blood perfusion was assessed for prothrombin time and international normalized ratio and demonstrated no significant change in clotting time. perfusion performed with rats showed patency of the device for over 100 min using Doppler ultrasound imaging. PET-CT imaging of the device successfully visualized metabolically active mouse insulinoma 6 ILCs. ILCs cultured for 7 days under static conditions exhibited abnormal morphology and increased activated caspase-3 staining when compared with the perfused device. These findings reinforce the need for convective transport in macroencapsulation strategies and offer a robust and versatile system to better inform preclinical design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193939PMC
http://dx.doi.org/10.3389/fbioe.2021.674125DOI Listing

Publication Analysis

Top Keywords

perfused macroencapsulation
8
study hemocompatibility
8
islet-like cell
8
cell clusters
8
device
5
macroencapsulation device
4
device study
4
hemocompatibility survival
4
survival islet-like
4
clusters transplantation
4

Similar Publications

Development of a compact NMR system to measure pO in a tissue-engineered graft.

J Magn Reson

December 2023

Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA. Electronic address:

Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels.

View Article and Find Full Text PDF

Islet encapsulation devices serve to deliver pancreatic beta cells to type 1 diabetic patients without the need for chronic immunosuppression. However, clinical translation is hampered by mass transport limitations causing graft hypoxia. This is exacerbated in devices relying only on passive diffusion for oxygenation.

View Article and Find Full Text PDF

Transplantation of hydrogel-encapsulated pancreatic islets is a promising long-term treatment for type 1 diabetes that restores blood glucose regulation while providing graft immunoprotection. Most human-scale islet encapsulation devices that rely solely on diffusion fail to provide sufficient surface area to meet islet oxygen demands. Perfused macroencapsulation devices use blood flow to mitigate oxygen limitations but increase the complexity of blood-device interactions.

View Article and Find Full Text PDF

vascularization and islet function in a microwell device for pancreatic islet transplantation.

Biomed Mater

April 2021

(Bio)artificial Organs, Department of Biomaterials Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands.

Islet encapsulation in membrane-based devices could allow for transplantation of donor islet tissue in the absence of immunosuppression. To achieve long-term survival of islets, the device should allow rapid exchange of essential nutrients and be vascularized to guarantee continued support of islet function. Recently, we have proposed a membrane-based macroencapsulation device consisting of a microwell membrane for islet separation covered by a micropatterned membrane lid.

View Article and Find Full Text PDF

The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!