Alloy nanostructures unveil extraordinary plasmonic phenomena that supersede the mono-metallic counterparts. Here we report silver-gold (Ag-Au) alloy nanohole arrays (α-NHA) for ultra-sensitive plasmonic label-free detection of (). Large-area α-NHA were fabricated by using nanoimprint lithography and concurrent thermal evaporation of Ag and Au. The completely miscible Ag-Au alloy exhibits an entirely different dielectric function in the near infra-red wavelength range compared to mono-metallic Ag or Au. The α-NHA demonstrate substantially enhanced refractive index sensitivity of 387 nm/RIU, surpassing those of Ag or Au mono-metallic nanohole arrays by approximately 40%. Moreover, the α-NHA provide highly durable material stability to corrosion and oxidation during over one-month observation. The ultra-sensitive α-NHA allow the label-free detection of in various concentration levels ranging from 10 to 10 cfu/ with a calculated limit of detection of 59 cfu/. This novel alloy plasmonic material provides a new outlook for widely applicable biosensing and bio-medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176792 | PMC |
http://dx.doi.org/10.1364/BOE.420828 | DOI Listing |
Nanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
This article conducts wire bonding tests and cold/hot-cycle tests using φ 0.025 mm Ag-Au alloy wires and Ag-Au-Pd alloy wires with different specifications. The results show that, due to the addition of the alloying element Pd, under the same bonding parameters, the fracture strength and ball-bonded point shear force of the Ag-Au-Pd alloy wires are significantly higher than those of the Ag-Au alloy wires.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFJACS Au
December 2024
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Establishing energy correlations among different metals can accelerate the discovery of efficient and cost-effective catalysts for complex reactions. Using a recently introduced coordination-based model, we can predict site-specific metal binding energies (Δ ) that can be used as a descriptor for chemical reactions. In this study, we have examined a range of metals including Ag, Au, Co, Cu, Ir, Ni, Os, Pd, Pt, Rh, and Ru and found linear correlations between predicted Δ and adsorption energies of CH and O (Δ and Δ ) at various coordination environments for all the considered metals.
View Article and Find Full Text PDFJ Chem Phys
December 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Rotational excitations of reactants are often considered to have little impact on chemical reactivity compared to the excitations of vibrational modes and translational motion. Here, we reveal a significant influence of the rotational excitation of HCl on its dissociation on an Ag/Au(111) alloy surface. This finding is based on six-dimensional time-dependent wave packet calculations performed on an accurately fitted machine learning potential energy surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!