Narrow-bandgap CsSn Pb I perovskite quantum dots (QDs) show great promise for optoelectronic applications owing to their reduced use of toxic Pb, improved phase stability, and tunable band gaps in the visible and near-infrared range. The use of small ions has been proven beneficial in enhancing the stability and photoluminescence quantum yield (PLQY) of perovskite QDs. The introduction of sodium (Na) has succeeded in boosting the PLQY of CsSnPbI QDs. Unfortunately, the initial PLQY of the Na-doped QDs undergoes a fast degradation after one-day storage in solution, hindering their practical applications. Using density functional theory (DFT) calculations and molecular dynamics (AIMD) simulations, we study the effect of Na ions on the strength of surface bonds, defect formation energies, and the interactions between surface ligands and perovskite QDs. Our results suggest that Na ions enhance the covalent bonding of surface tin-iodine bonds and form strong ionic bonding with the neighboring iodine anions, thus suppressing the formation of I and Sn vacancies. Furthermore, Na ions also enhance the binding strength of the surface ligands with the perovskite QD surface. However, according to our AIMD simulations, the enhanced surface ligand binding is only effective on a selected surface configuration. While the position of Na ions remains intact on a CsI-terminated surface, they diffuse vigorously on an MI-terminated surface. As a result, the positive effect of Na vanishes with time, explaining the relatively short lifetime of the experimentally obtained high PLQYs. Our results indicate that engineering the surface termination of the QDs could be the next step in maintaining the favorable effect of Na doping for a high and stable PLQY of Sn-Pb QDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148221 | PMC |
http://dx.doi.org/10.1039/d1ta00955a | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Luminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.
View Article and Find Full Text PDFJ Oral Rehabil
January 2025
Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
Background: Surface electromyography (sEMG) has been used in a wide range of studies conducted in the field of dysphagia.
Objectives: The main aim of this case-control study is to obtain how submental and infrahyoid sEMG signals differ based on residue, penetration and aspiration.
Methods: A total of 100 participants (50 patients with suspected dysphagia and 50 healthy controls) were enrolled in the present study.
J Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!