Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment-protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm and 1545 cm for the 0-bp dimer and 1100 cm for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163443PMC
http://dx.doi.org/10.1039/d0sc01127dDOI Listing

Publication Analysis

Top Keywords

light harvesting
12
vibronic exciton
12
exciton states
12
dna scaffold
8
coherences
8
beating frequency
8
observed coherences
8
coherences vibronic
8
coherences persist
8
dna
5

Similar Publications

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Grey jujube ( Mill. cv. Huizao), a prominent cultivar from Xinjiang, China, is well known for its high nutritional value and medicinal benefits.

View Article and Find Full Text PDF

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!