Multivalent ligand-protein interactions are a key concept in biology mediating, for example, signalling and adhesion. Multivalent ligands often have tremendously increased binding affinities. However, they also can cause crosslinking of receptor molecules leading to precipitation of ligand-receptor complexes. Plaque formation due to precipitation is a known characteristic of numerous fatal diseases limiting a potential medical application of multivalent ligands with a precipitating binding mode. Here, we present a new design of high-potency multivalent ligands featuring an inline arrangement of ligand epitopes with exceptionally high binding affinities in the low nanomolar range. At the same time, we show with a multi-methodological approach that precipitation of the receptor is prevented. We distinguish distinct binding modes of the ligands, in particular we elucidate a unique chelating binding mode, where four receptor binding sites are simultaneously bridged by one multivalent ligand molecule. The new design concept of inline multivalent ligands, which we established for the well-investigated model lectin wheat germ agglutinin, has great potential for the development of high-potency multivalent inhibitors as future therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159369 | PMC |
http://dx.doi.org/10.1039/d0sc01744b | DOI Listing |
Small
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Capturing circulating tumor cells (CTCs) in vivo from the bloodstream lessens tumor metastasis and recurrence risks. However, the absence of CTC receptors due to epithelial-mesenchymal transition (EMT), the limited binding capacity of a single ligand, and the complexity of the blood flow environment significantly reduce the efficiency of CTC capture in vivo. Herein, a multivalent ligand-decorated microsphere enrichment system (MLMES) is crafted that incorporates a capture column replete with an immunosorbent that precisely recognizes and binds the stably expressed cluster of differentiation 44 (CD44) and glucose transporter protein 1 (GLUT1) receptors present on the exterior of CTCs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
The nanoengager strategy, which enhances receptor signaling responsiveness through a multivalent ligand binding mode, offers a promising approach for improving immune cell redirecting therapy. Increasing nanomaterial platforms have been developed for constructing more flexible and multifunctional nanoengagers, but the different mediating mechanisms from their multivalent nanostructures, compared to original monomolecule engagers, have rarely been discussed. Here, we constructed dual-specificity T cell nanoengagers (TNEs) targeting CD3 and PDL1 receptors based on a polyethylene glycol--polylactic acid (PEG--PLA)-assembled nanoparticle and specifically studied the impact of surface antibody valences on their functional mechanisms, thereby enhancing the structural advantages of TNEs against solid tumors.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!