Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)(2,2'-bipyridine)] (), [Fe(CN)(2,3-bis(2-pyridyl)pyrazine)] () and [Fe(CN)(2,2'-bipyrimidine)] () were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the MLCT lifetime to range from 180 fs to 67 ps. The MLCT lifetimes in and decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (MC) excited state, as established by the Tanabe-Sugano analysis of the Fe 2p3d RIXS data. In contrast, the MLCT lifetime in changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing MLCT → ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The MLCT → GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode ( = 1530 cm), which is most displaced for complex , making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the MLCT and the MC states and suppression of the intramolecular distortion of the acceptor ligand in the MLCT excited state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159445 | PMC |
http://dx.doi.org/10.1039/c9sc06272f | DOI Listing |
Environ Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:
Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.
View Article and Find Full Text PDFFerredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).
View Article and Find Full Text PDFTo realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
East China Normal University, School of Chemistry and Molecular Engineering, 3663 N. Zhongshan Rd., 200062, Shanghai, CHINA.
We present a novel electrochemical dicarboxylation of epoxides with CO2, characterized by the cleavage of two C-O single bonds. Not only are vinyl epoxides viable, but cyclic carbonates also serve as effective substrates, facilitating the synthesis of E-configured adipic and octanedioic acids with high chemo-, regio-, and stereoselectivity. The synthetic practicality is further highlighted by the diverse functionalizations of the resulting multifunctional diacids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!