The control of technological systems by human operators has been the object of study for many decades. The increasing complexity in the digital age has made the optimization of the interaction between system and human operator particularly necessary. In the present thematic issue, ten exemplary articles are presented, ranging from observational field studies to experimental work in highly complex navigation simulators. For the human operator, the processes of attention play a crucial role, which are captured in the contributions listed in this thematic issue by eye-tracking devices. For many decades, eye tracking during car driving has been investigated extensively (e.g. 6; 5). In the present special issue, Cvahte Ojsteršek & Topolšek (4) provide a literature review and scientometric analysis of 139 eye-tracking studies investigating driver distraction. For future studies, the authors recommend a wider variety of distractor stimuli, a larger number of tested participants, and an increasing interdisciplinarity of researchers. In addition to most studies investigating bottom-up processes of covered attention, Tuhkanen, Pekkanen, Lehtonen & Lappi (10) include the experimental control of top-down processes of overt attention in an active visuomotor steering task. The results indicate a bottom-up process of biasing the optic flow of the stimulus input in interaction with the top-down saccade planning induced by the steering task. An expanding area of technological development involves autonomous driving where actions of the human operator directly interact with the programmed reactions of the vehicle. Autonomous driving requires, however, a broader exploration of the entire visual input and less gaze directed towards the road centre. Schnebelen, Charron & Mars (9) conducted experimental research in this area and concluded that gaze dynamics played the most important role in distinguishing between manual and automated driving. Through a combination of advanced gaze tracking systems with the latest vehicle environment sensors, Bickerdt, Wendland, Geisler, Sonnenberg & Kasneci (2021) conducted a study with 50 participants in a driving simulator and propose a novel way to determine perceptual limits which are applicable to realistic driving scenarios. Eye-Computer-Interaction (ECI) is an interactive method of directly controlling a technological device by means of ocular parameters. In this context, Niu, Gao, Xue, Zhang & Yang (8) conducted two experiments to explore the optimum target size and gaze-triggering dwell time in ECI. Their results have an exemplary application value for future interface design. Aircraft training and pilot selection is commonly performed on simulators. This makes it possible to study human capabilities and their limitation in interaction with the simulated technological system. Based on their methodological developments and experimental results, Vlačić, Knežević, Mandal, Rođenkov & Vitsas (11) propose a network approach with three target measures describing the individual saccade strategy of the participants in this study. In their analysis of the cognitive load of pilots, Babu, Jeevitha Shree, Prabhakar, Saluja, Pashilkar & Biswas (3) investigated the ocular parameters of 14 pilots in a simulator and during test flights in an aircraft during air to ground attack training. Their results showed that ocular parameters are significantly different in different flying conditions and significantly correlate with altitude gradients during air to ground dive training tasks. In maritime training the use of simulations is per international regulations mandatory. Mao, Hildre & Zhang (7) performed a study of crane lifting and compared novice and expert operators. Similarities and dissimilarities of eye behavior between novice and expert are outlined and discussed. The study of Atik & Arslan (2) involves capturing and analyzing eye movement data of ship officers with sea experience in simulation exercises for assessing competency. Significant differences were found between electronic navigation competencies of expert and novice ship officers. The authors demonstrate that the eye tracking technology is a valuable tool for the assessment of electronic navigation competency. The focus of the study by Atik (1) is the assessment and training of situational awareness of ship officers in naval Bridge Resource Management. The study shows that eye tracking provides the assessor with important novel data in simulator based maritime training, such as focus of attention, which is a decisive factor for the effectiveness of Bridge Resource Management training. The research presented in the different articles of this special thematic issue cover many different areas of application and involve specialists from different fields, but they converge on repeated demonstrations of the usefulness of measuring attentional processes by eye movements or using gaze parameters for controlling complex technological devices. Together, they share the common goal of improving the potential and safety of technology in the digital age by fitting it to human capabilities and limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182438PMC
http://dx.doi.org/10.16910/jemr.12.3.0DOI Listing

Publication Analysis

Top Keywords

human operator
12
thematic issue
12
eye tracking
12
ocular parameters
12
ship officers
12
eye movements
8
special issue
8
study
8
digital age
8
studies investigating
8

Similar Publications

This case report presents an atypical transverse cervical artery with its detailed anatomy, morphogenesis, and association with the high arch-shaped subclavian artery. The atypical arteries, related arteries, and adjacent cervical and brachial plexuses were macroscopically examined in a 98-year-old Japanese female cadaver donated to The Nippon Dental University for medical education and research. The atypical deep branch of the transverse cervical artery originated from the internal thoracic artery and passed through between the C5 and C6 roots, in close contact with the C5 and C6 junction, to reach the dorsal side of the brachial plexus.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Purpose: To investigate the effect of preoperative prealbumin levels on long-term survival outcomes after gastrectomy in patients with gastric cancer (GC) dichotomized based on age.

Methods: This retrospective cohort study included consecutive patients who underwent radical gastrectomy for primary stage I-III GC between May 2006 and March 2017. Patients were allocated to groups based on age (≥ 70 or < 70 years) and subgroups based on prealbumin levels (high, ≥ 22 mg/dL; moderate, 15-22 mg/dL; or low, < 15 mg/dL), and multivariate Cox regression was used for survival analyses.

View Article and Find Full Text PDF

Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.

View Article and Find Full Text PDF

The application of the technique for dorsal median sulcus mapping in intramedullary space occupying surgery: a single-center experience.

Acta Neurochir (Wien)

January 2025

Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.

Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!