The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease.

Stem Cells Int

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL 32816, USA.

Published: May 2021

An estimated 6.2 million Americans aged 65 or older are currently living with Alzheimer's disease (AD), a neurodegenerative disease that disrupts an individual's ability to function independently through the degeneration of key regions in the brain, including but not limited to the hippocampus, the prefrontal cortex, and the motor cortex. The cause of this degeneration is not known, but research has found two proteins that undergo posttranslational modifications: tau, a protein concentrated in the axons of neurons, and amyloid precursor protein (APP), a protein concentrated near the synapse. Through mechanisms that have yet to be elucidated, the accumulation of these two proteins in their abnormal aggregate forms leads to the neurodegeneration that is characteristic of AD. Until the invention of induced pluripotent stem cells (iPSCs) in 2006, the bulk of research was carried out using transgenic animal models that offered little promise in their ability to translate well from benchtop to bedside, creating a bottleneck in the development of therapeutics. However, with iPSC, patient-specific cell cultures can be utilized to create models based on human cells. These human cells have the potential to avoid issues in translatability that have plagued animal models by providing researchers with a model that closely resembles and mimics the neurons found in humans. By using human iPSC technology, researchers can create more accurate models of AD while also focusing on regenerative medicine using iPSC . The following review focuses on the current uses of iPSC and how they have the potential to regenerate damaged neuronal tissue, in the hopes that these technologies can assist in getting through the bottleneck of AD therapeutic research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172295PMC
http://dx.doi.org/10.1155/2021/5511630DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
8
pluripotent stem
8
stem cells
8
alzheimer's disease
8
protein concentrated
8
animal models
8
human cells
8
potential induced
4
cells
4
cells treat
4

Similar Publications

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

Background: Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system.

View Article and Find Full Text PDF

While clinical trials are ongoing using human pluripotent stem cell-derived midbrain dopamine (mDA) neuron precursor grafts in Parkinson's disease (PD), current protocols to derive mDA neurons remain suboptimal. In particular, the yield of TH+ mDA neurons after grafting and the expression of some mDA neuron and subtype-specific markers can be further improved. For example, characterization of mDA grafts by single cell transcriptomics has yielded only a small proportion of mDA neurons and a considerable fraction of contaminating cell populations.

View Article and Find Full Text PDF

Unlabelled: In vertebrates, germ layer specification represents a critical transition where pluripotent cells acquire lineage-specific identities. We identify the maternal transcription factors Foxi2 and Sox3 to be pivotal master regulators of ectodermal germ layer specification in . Ectopic co-expression of Foxi2 and Sox3 in prospective endodermal tissue induces the expression of ectodermal markers while suppressing mesendodermal markers.

View Article and Find Full Text PDF

Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells.

ACS Omega

January 2025

Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!