Education is the cultivation of people to promote and guarantee the development of society. Education reforms can play a vital role in the development of a country. However, it is crucial to continually monitor the educational model's performance by forecasting the outcome's progress. Machine learning-based models are currently a hot topic in improving the forecasting research area. Forecasting models can help to analyse the impact of future outcomes by showing yearly trends. For this study, we developed a hybrid, forecasting time-series model by long short-term memory (LSTM) network and self-attention mechanism (SAM) to monitor Morocco's educational reform. We analysed six universities' performance and provided a prediction model to evaluate the best-performing university's performance after implementing the latest reform, i.e., from 2015-2030. We forecasted the six universities' research outcomes and tested our proposed methodology's accuracy against other time-series models. Results show that our model performs better for predicting research outcomes. The percentage increase in university performance after nine years is discussed to help predict the best-performing university. Our proposed algorithm accuracy and performance are better than other algorithms like LSTM and RNN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169264 | PMC |
http://dx.doi.org/10.1155/2021/6689204 | DOI Listing |
Sci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:
Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.
View Article and Find Full Text PDFSci Rep
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
The salient object detection task based on deep learning has made significant advances. However, the existing methods struggle to capture long-range dependencies and edge information in complex images, which hinders precise prediction of salient objects. To this end, we propose a salient object detection method with non-local feature enhancement and edge reconstruction.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Technology, Yibin University, Yibin, 644000, China.
Personalized tourism has recently become an increasingly popular mode of travel. Effective personalized route recommendations must consider numerous complex factors, including the vast historical trajectory of tourism, individual traveler preferences, and real-time environmental conditions. However, the large temporal and spatial spans of trajectory data pose significant challenges to achieving high relevance and accuracy in personalized route recommendation systems.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, 361005, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!