Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies.

Front Plant Sci

Laboratory of Nematology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands.

Published: May 2021

Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193132PMC
http://dx.doi.org/10.3389/fpls.2021.668548DOI Listing

Publication Analysis

Top Keywords

plant-parasitic nematodes
12
auxin homeostasis
12
multiple strategies
8
plant-parasitic nematode
8
sedentary plant-parasitic
4
nematodes
4
nematodes alter
4
alter auxin
4
homeostasis multiple
4
strategies sedentary
4

Similar Publications

Meloidogyne incognita, a highly destructive plant-parasitic nematode, poses a significant threat to crop production. The reliance on chemical nematicides for nematode control has been crucial; however, the banning of many effective nematicides due to their adverse effects has necessitated the exploration of alternative solutions. Rhizosphere biocontrol bacteria, particularly strains of Bacillus, have demonstrated promising results in managing plant-parasitic nematodes.

View Article and Find Full Text PDF

Agricultural soil environments contain different types of nematodes in all trophic levels that aid in balancing the soil food web. Beneficial free-living nematodes (FLNs) consist of bacterivores, fungivores, predators, and omnivores that help in the mineralization of the soil and the top-down control of harmful plant-parasitic nematodes (PPNs). Annually, USD 125 billion in worldwide crop losses are caused by PPNs, making them a plant pathogen of great concern for growers.

View Article and Find Full Text PDF

Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M.

View Article and Find Full Text PDF

In this survey, 14 populations of were collected from the rhizosphere of eight fruit and nut trees in Fars province, Southern Iran. The phylogenetic relationships of these populations with other representatives of the species were investigated using sequences of cytochrome c oxidase subunit 1 mitochondrial gene () and D2-D3 expansion fragments of 28S rDNA. Phylogenetic studies indicated a close relationship of the currently sequenced populations with known haplotype groups (HG) in the tree and revealed two separate lineages in the 28S rDNA tree.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!