In plants, the trafficking mechanisms by which sterols move through the plant and into target cells are unknown. Earlier studies identified endosomes as primary candidates for internalization of sterols in plants, but these results have come into question. Here, we show that in elongating root cells, the internalization of sterol occurs primarily by a non-endocytic mechanism. Added fluorescent sterols [dehydroergosterol (DHE) and BODIPY-cholesterol (BCh)] do not initially label endosomes identified by fluorescent protein markers or by internalized FM4-64. Instead, the nuclear envelope, an organelle not associated with the endocytic pathway but part of the endoplasmic reticulum (ER), becomes labeled. This result is supported by experiments with the inducible overexpression of auxilin-2-like protein (AUX2 line), which blocks most endocytosis upon induction. Internalization and nuclear envelope labeling still occur in induced AUX2 cells. Longer-term incubation labels the oil body, a site involved in sterol storage. Although the first site of localization, the nuclear envelope, is part of the ER, other domains of the ER do not accumulate the label. The trafficking pathway differs from vesicular endocytosis and points toward a different pathway of sterol transport possibly involving other mechanisms, such as ER-plasma membrane contact sites and cytoplasmic transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187924 | PMC |
http://dx.doi.org/10.3389/fpls.2021.616631 | DOI Listing |
Mech Ageing Dev
January 2025
Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Medicine - Endocrinology, Baylor College of Medicine, Houston, Texas, USA.
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFMechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.
View Article and Find Full Text PDFCell Rep
January 2025
Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA. Electronic address:
ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!