Scent-mediated communication is considered the principal communication channel in many mammal species. Compared with visual and vocal communication, odors persist for a longer time, enabling individuals to interact without being in the same place at the same time. The brown bear (), like other mammals, carries out chemical communication, for example, by means of scents deposited on marking (or rub) trees. In this study, we assessed rub tree selectivity of the brown bear in the predominantly deciduous forests of the Cantabrian Mountains (NW Spain). We first compared the characteristics of 101 brown bear rub trees with 263 control trees. We then analyzed the potential factors affecting the density of rub trees along 35 survey routes along footpaths. We hypothesized that: (1) bears would select particular trees, or tree species, with characteristics that make them more conspicuous; and (2) that bears would select trees located in areas with the highest presence of conspecifics, depending on the population density or the position of the trees within the species' range. We used linear models and generalized additive models to test these hypotheses. Our results showed that brown bears generally selected more conspicuous trees with a preference for birches ( spp.). This choice may facilitate the marking and/or detection of chemical signals and, therefore, the effectiveness of intraspecific communication. Conversely, the abundance of rub trees along footpaths did not seem to depend on the density of bear observations or their relative position within the population center or its border. Our results suggest that Cantabrian brown bears select trees based on their individual characteristics and their location, with no influence of characteristics of the bear population itself. Our findings can be used to locate target trees that could help in population monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189685 | PMC |
http://dx.doi.org/10.1093/jmammal/gyaa170 | DOI Listing |
ISA Trans
May 2024
Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar. Electronic address:
This paper introduces a novel direct torque control approach based on the decision tree (T-DTC), employing artificial neural networks that are effectively trained to enhance accuracy and robustness. The main objective of T-DTC is the substantial reduction of flux and torque ripples inherent in the conventional DTC, ensuring effective control of the induction motor. The conventional hysteresis controllers for stator flux and electromagnetic torque are replaced by two advanced controllers named M5 Prime model trees.
View Article and Find Full Text PDFZ Med Phys
August 2023
Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany.
Ultrasound Localization Microscopy (ULM) is an emerging technique that provides impressive super-resolved images of microvasculature, i.e., images with much better resolution than the conventional diffraction-limited ultrasound techniques and is already taking its first steps from preclinical to clinical applications.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Cell Mol Life Sci
April 2022
Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that comprises the glycoproteins tenascin-C (Tnc) and laminin-1 (LN1). In the present study, we investigated the function of these ECM glycoproteins in the adult stem cell niche.
View Article and Find Full Text PDFSci Total Environ
July 2022
Institute of Geography, Ruhr University Bochum, 44801 Bochum, Germany.
The current climate change trend urges the application of efficient spatial planning to mitigate the effects of urbanization on local urban warming. Nevertheless, how urban temperatures respond to urban form changes inside cities is still insufficiently understood. In this paper, we explored the relationship between urban form and diurnal space-time land surface temperature (LST) trends (2003-2019) in Beijing (continental climate), Cairo (arid) and Santiago (temperate).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!