The unavailability of appropriate mechanisms for timely detection of diseases and successive treatment causes the death of a large number of people around the globe. The timely diagnosis of grave diseases like different forms of cancer and other life-threatening diseases can save a valuable life or at least extend the life span of an afflicted individual. The advancement of the Internet of Medical Things (IoMT) enabled healthcare technologies can provide effective medical facilities to the population and contribute greatly towards the recuperation of patients. The usage of IoMT in the diagnosis and study of histopathological images can enable real-time identification of diseases and corresponding remedial actions can be taken to save an affected individual. This can be achieved by the use of imaging apparatus with the capacity of auto-analysis of captured images. However, most deep learning-based image classifying models are bulk in size and are inappropriate for use in IoT based imaging devices. The objective of this research work is to design a deep learning-based lightweight model suitable for histopathological image analysis with appreciable accuracy. This paper presents a novel lightweight deep learning-based model "ReducedFireNet", for auto-classification of histopathological images. The proposed method attained a mean accuracy of 96.88% and an F1 score of 0.968 on evaluating an actual histopathological image data set. The results are encouraging, considering the complexity of histopathological images. In addition to the high accuracy the lightweight design (size in few KBs) of the ReducedFireNet model, makes it suitable for IoMT imaging equipment. The simulation results show the proposed model has computational requirement of 0.201 GFLOPS and has a mere size of only 0.391 MB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185315 | PMC |
http://dx.doi.org/10.1007/s11063-021-10555-1 | DOI Listing |
PLoS One
January 2025
Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Ålesund Hospital, Møre og Romsdal Hospital Trust, Ålesund, Norway.
Background: Deep learning-based segmentation of brain metastases relies on large amounts of fully annotated data by domain experts. Semi-supervised learning offers potential efficient methods to improve model performance without excessive annotation burden.
Purpose: This work tests the viability of semi-supervision for brain metastases segmentation.
J Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, Renmin Hospital of Wuhan University, 99 Zhang Zhi-dong Road, Wuhan, Hubei, 430060, P.R. China.
Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.
Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.
Eur Radiol
January 2025
Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
Objectives: To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR.
Materials And Methods: A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!