Aim Of The Study: Some cancerous patients have hip prosthesis of metal elements when they undergo radiation therapy. Metal implants are a cause of metal artifacts in computed tomography (CT) images due to their higher density compared to normal tissues. The aim of this study is to evaluate the quantitative effects of metal artifacts on dose distribution of the pelvic region.
Materials And Methods: Seven patients with metal implants in the pelvic region were scanned and CT images were exported to the Monaco treatment planning system. Based on the diagnosis of each patient, three-dimensional plans were implemented on CT images and dose distributions were extracted. At the next step, metal artifacts were contoured and electron densities of these new structures were modified to the extent of soft tissue. Finally, dose distributions and the differences were investigated by VeriSoft software.
Results: The results of this study showed that if the electron density to metal artifacts is not assigned properly, it will increase the calculated monitor units (MUs) by almost 3.78 MUs/fraction which will significantly affect total dose distribution of treatment.
Conclusion: For the precise implementation of the treatment and in order to minimize the systematic errors related to the calculated MUs, necessary corrections on the electron density of metal artifacts should be considered before the treatment planning. The issue will be more critical in advanced treatment modalities where dose escalation is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/jcrt.JCRT_786_19 | DOI Listing |
Cureus
December 2024
Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Hiroshima, JPN.
Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Trauma and Orthopaedic Surgeon, Cork University Hospital, Ireland.
Introduction: In this article, we report a unique case of head-stem dissociation in a metal-on-metal total hip replacement which utilized an Exeter stem. Although metallosis and pseudotumor formation are well recognized complications of metal-on-metal hip replacements, head-stem dissociations are rare with few being reported in literature. To the best of our knowledge, this case report is the first to report this occurrence in an Exeter stem.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan.
A 66-year-old woman presented with persistent knee effusion three months after undergoing a cemented medial uni-compartmental knee replacement. She was afebrile and able to walk with a stick. Physical examination revealed moderate effusion.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Resident of Oral and Maxillofacial Radiology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Early detection of peri-implant bone defects can improve long-term durability of dental implants. By the advances in cone-beam computed tomography (CBCT) scanners and introduction of new algorithms, it is important to find the most efficient protocol for detection of bone defects. This study aimed to assess the efficacy of metal artifact reduction (MAR) and advanced noise reduction (ANR) algorithms for detection of peri-implant bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!