Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2020.7587DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cervical spinal
12
motor impairments
8
cord injury
8
neuronal death
8
model cervical
8
cord segments
8
spinal
7
cord
7
lesion
5

Similar Publications

Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.

View Article and Find Full Text PDF

User-Centered Design of Neuroprosthetics: Advancements and Limitations.

CNS Neurol Disord Drug Targets

January 2025

Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.

Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.

View Article and Find Full Text PDF

Background: Bimanual motor training is an effective neurological rehabilitation strategy. However, its use has rarely been investigated in patients with paralysis caused by spinal cord injury (SCI). Therefore, we conducted a case study to investigate the effects of robot-assisted task-oriented bimanual training (RBMT) on upper limb function, activities of daily living, and movement-related sensorimotor activity in a patient with SCI.

View Article and Find Full Text PDF

This case report describes a 70-year-old male presenting with limb weakness, urinary retention and tandem cervical and lumbar spinal stenosis with complicating white cord syndrome, a rare reperfusion injury post decompression surgery. Initially admitted following an unwitnessed fall, the patient's neurological examination indicated that progressive weakness of the limbs and sensory loss etiology is cervical and lumbar spondylosis with severe spinal canal stenosis, confirmed by imaging. Due to rapid deterioration, he underwent C5 corpectomy, cervical decompression and fusion.

View Article and Find Full Text PDF

Introduction: Nerve injuries and resultant pain are common causes of emergency department (ED) visits in the United States. Injuries often occur either due to activity (ie sports related injury) or due to consumer products such as stairs or bedframes. We investigated the incidence of consumer product-related nerve injuries (CPNIs) in patients who presented to the ED in the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!