Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Supercritical fluid-based extraction technologies are currently being increasingly utilized in high purity extract products for food industries. In recent years, supercritical fluid-based extraction technology is transformed in biomaterials process fields to be further utilized for tissue engineering and other biomedical applications. In particular, supercritical fluid-based decellularization protocols have great advantage over the conventional decellularization as it may allow preservation of extracellular matrix components and structures. In this review, the latest technological development utilizing the supercritical fluid-based decellularization for regenerative medicine is introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202100160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!