Patch clamp recording enabled a revolution in cellular electrophysiology, and is useful for evaluating the functional consequences of ion channel gene mutations or variants associated with human disorders called channelopathies. However, due to massive growth of genetic testing in medical practice and research, the number of known ion channel variants has exploded into the thousands. Fortunately, automated methods for performing patch clamp recording have emerged as important tools to address the explosion in ion channel variants. In this chapter, we present our approach to harnessing automated electrophysiology to study a human voltage-gated potassium channel gene (KCNQ1), which harbors hundreds of mutations associated with genetic disorders of heart rhythm including the congenital long-QT syndrome. We include protocols for performing high efficiency electroporation of heterologous cells with recombinant KCNQ1 plasmid DNA and for automated planar patch recording including data analysis. These methods can be adapted for studying other voltage-gated ion channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2021.02.011DOI Listing

Publication Analysis

Top Keywords

ion channel
16
channel variants
12
automated electrophysiology
8
patch clamp
8
clamp recording
8
channel gene
8
ion
5
channel
5
functional evaluation
4
evaluation human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!