Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO) composite materials on the photodegradation of two antibiotics widely used in aquaculture (sulfadiazine (SDZ) and oxolinic acid (OXA)) was assessed. Four materials were synthesized: BCMag (magnetized BC), BCMag_TiO (BCMag functionalized with TiO), BC_TiO_MagIn and BC_TiO_MagEx (BC functionalized with TiO and afterwards magnetized by in-situ and ex-situ approaches, respectively). SDZ half-life time (t) noticeably decreased 3.9 and 3.4 times in presence of BCMag_TiO and BC_TiO_MagEx, respectively. In the case of OXA, even though differences were not so substantial, the produced photocatalysts also allowed for a decrease in t (2.6 and 1.7 times, in presence of BCMag_TiO and BC_TiO_MagEx, respectively). Overall, the here synthesized BC/TiO magnetic nanocomposites through a circular economy process are promising photocatalysts for a sustainable solar-driven removal of antibiotics from aquaculture effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!