The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112917 | DOI Listing |
Brain Behav Immun Health
February 2025
Department of Psychiatry, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
Severe mental disorders are multi-dimensional constructs, resulting from the interaction of genetic, biological, psychosocial, and environmental factors. Among the latter, pollution and climate change are frequently being considered in the etiopathogenesis of severe mental disorders. This systematic review aims to investigate the biological mechanisms behind the relationship between environmental pollutants, climate change, and mental disorders.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Agricultural, Food and Environmental Sciences Università Politecnica delle Marche Ancona Italy.
This study investigates climate change impacts on spontaneous vegetation, focusing on the Mediterranean basin, a hotspot for climatic changes. Two case study areas, Monti Sibillini (central Italy, temperate) and Sidi Makhlouf (Southern Tunisia, arid), were selected for their contrasting climates and vegetation. Using WorldClim's CMCC-ESM2 climate model, future vegetation distribution was predicted for 2050 and 2080 under SSP 245 (optimistic) and 585 (pessimistic) scenarios.
View Article and Find Full Text PDFEcol Evol
January 2025
Conservation Science Research Group, School of Environmental and Life Sciences University of Newcastle Callaghan New South Wales Australia.
Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.
View Article and Find Full Text PDFEcol Evol
January 2025
Dynamic Macroecology/Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland.
High-Arctic environments are facing an elevated pace of warming and increasing human activities, making them more susceptible to the introduction and spread of alien species. We investigated the role of human disturbance in facilitating the spread of a native plant () in a high-Arctic natural environment close to Isfjord Radio station and along adjacent hiking trails at Kapp Linné, Svalbard. We reconstructed the spatial pattern of the arrival and spread of at Kapp Linné by combining historical records of the species occurrence (1928-2018) with a contemporary survey of the plant abundance along the main hiking trail (2023 survey) and tested the relative effects of altitude and proximity to hiking trails on the species density via a generalised linear model (GLM).
View Article and Find Full Text PDFWarming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!