The healthier healthcare management models for COVID-19.

J Infect Public Health

Institute of Advanced Materials, IAAM, Ulrika 59053, Sweden; VBRI, Gammalkilsvägen 18, Ulrika 59 053, Sweden; VBRI Innovation, 7/16 Kalkaji Extension, New Delhi 110 019, India; mHospitals, 2/31 Nehru Enclave, New Delhi 110019, India. Electronic address:

Published: July 2021

The worldwide pandemic situation of COVID-19 generates a situation in which healthcare resources such as diagnostic kits, drugs and basic healthcare infrastructure were on shortage throughout the period, along with negative impact on socio-economic system. Standardized public healthcare models were missing in pandemic situation, covering from hospitalized patient care to local resident's healthcare managements in terms of monitoring, assess to diagnosis and medicines. This exploratory and intervention-based study with the objective of proposing COVID-19 Care Management Model representing comprehensive care of society including patients (COVID-19 and other diseases) and healthy subjects under integrated framework of healthier management model. Shifting policy towards technology-oriented models with well-aligned infrastructure can achieve better outcomes in COVID-19 prevention and care. The planned development of technical healthcare models for prognosis and improved treatment outcomes that take into account not only genomics, proteomics, nanotechnology, materials science perspectives but also the possible contribution of advanced digital technologies is best strategies for early diagnosis and infections control. In view of current pandemic, a Healthier Healthcare Management Model is proposed here as a source of standardized care having technology support, medical consultation, along with public health model of sanitization, distancing and contact less behaviours practices. Effective healthcare managements have been the main driver of healthier society where, positive action at identified research, technology and management segment more specifically public health, patient health, technology selection and political influence has great potential to enhanced the global response to COVID-19. The implementation of such practices will deliver effective diagnosis and control mechanism and make healthier society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164338PMC
http://dx.doi.org/10.1016/j.jiph.2021.05.014DOI Listing

Publication Analysis

Top Keywords

management model
12
healthier healthcare
8
healthcare management
8
pandemic situation
8
healthcare models
8
healthcare managements
8
public health
8
healthier society
8
healthcare
7
covid-19
6

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

Background And Aim: Managing obesity requires a comprehensive approach that involves therapeutic lifestyle changes, medications, or metabolic surgery. Many patients seek health information from online sources and artificial intelligence models like ChatGPT, Google Gemini, and Microsoft Copilot before consulting health professionals. This study aims to evaluate the appropriateness of the responses of Google Gemini and Microsoft Copilot to questions on pharmacologic and surgical management of obesity and assess for bias in their responses to either the ADA or AACE guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!