A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct modulation of tracheal and laryngopharyngeal cough via superior laryngeal nerve in cat. | LitMetric

Distinct modulation of tracheal and laryngopharyngeal cough via superior laryngeal nerve in cat.

Respir Physiol Neurobiol

Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.

Published: November 2021

Unilateral and bilateral cooling and bilateral transsection of the superior laryngeal nerve (SLN) were employed to modulate mechanically induced tracheobronchial (TB) and laryngopharyngeal (LPh) cough in 12 anesthetized cats. There was little effect of SLN block or cut on TB. Bilateral SLN cooling reduced the number of LPh (<50 %, p < 0.05), amplitudes of diaphragm EMG activity (<55 %, p < 0.05), and cough expiratory efforts (<40 %, p < 0.01) during LPh. Effects after unilateral SLN cooling were less pronounced. Temporal analysis of LPh showed only shortening of diaphragm and abdominal muscles burst overlap in the inspiratory-expiratory transition after unilateral SLN cooling. Bilateral cooling reduced both expiratory phase and total cough cycle duration. There was no significant difference in the average effects of cooling left or right SLN on LPh or TB as well as no differences in contralateral and ipsilateral diaphragm and abdominal EMG amplitudes. Our results show that reduced afferent drive in the SLN markedly attenuates LPh with virtually no effect on TB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2021.103716DOI Listing

Publication Analysis

Top Keywords

superior laryngeal
8
laryngeal nerve
8
distinct modulation
4
modulation tracheal
4
tracheal laryngopharyngeal
4
laryngopharyngeal cough
4
cough superior
4
nerve cat
4
cat unilateral
4
unilateral bilateral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!