In a previous study, we showed that replication through the N1-methyl-deoxyadenosine (1-MeA) adduct in human cells is mediated via three different Polι/Polθ, Polη, and Polζ-dependent pathways. Based on biochemical studies with these Pols, in the Polι/Polθ pathway, we inferred a role for Polι in the insertion of a nucleotide (nt) opposite 1-MeA and of Polθ in extension of synthesis from the inserted nt; in the Polη pathway, we inferred that this Pol alone would replicate through 1-MeA; in the Polζ pathway, however, the Pol required for inserting an nt opposite 1-MeA had remained unidentified. In this study, we provide biochemical and genetic evidence for a role for Polλ in inserting the correct nt T opposite 1-MeA, from which Polζ would extend synthesis. The high proficiency of purified Polλ for inserting a T opposite 1-MeA implicates a role for Polλ-which normally uses W-C base pairing for DNA synthesis-in accommodating 1-MeA in a syn confirmation and forming a Hoogsteen base pair with T. The potential of Polλ to replicate through DNA lesions by Hoogsteen base pairing adds another novel aspect to Polλ's role in translesion synthesis in addition to its role as a scaffolding component of Polζ. We discuss how the action mechanisms of Polλ and Polζ could be restrained to inserting a T opposite 1-MeA and extending synthesis thereafter, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260881 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100868 | DOI Listing |
J Biol Chem
July 2021
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA. Electronic address:
In a previous study, we showed that replication through the N1-methyl-deoxyadenosine (1-MeA) adduct in human cells is mediated via three different Polι/Polθ, Polη, and Polζ-dependent pathways. Based on biochemical studies with these Pols, in the Polι/Polθ pathway, we inferred a role for Polι in the insertion of a nucleotide (nt) opposite 1-MeA and of Polθ in extension of synthesis from the inserted nt; in the Polη pathway, we inferred that this Pol alone would replicate through 1-MeA; in the Polζ pathway, however, the Pol required for inserting an nt opposite 1-MeA had remained unidentified. In this study, we provide biochemical and genetic evidence for a role for Polλ in inserting the correct nt T opposite 1-MeA, from which Polζ would extend synthesis.
View Article and Find Full Text PDFSci Rep
March 2017
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.
N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA.
View Article and Find Full Text PDFJ Biol Chem
December 2015
From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways.
View Article and Find Full Text PDFNucleic Acids Res
July 2010
Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
N(1)-meA and N(3)-meC are cytotoxic DNA base methylation lesions that can accumulate in the genomes of various organisms in the presence of S(N)2 type methylating agents. We report here the structural characterization of these base lesions in duplex DNA using a cross-linked protein-DNA crystallization system. The crystal structure of N(1)-meA:T pair shows an unambiguous Hoogsteen base pair with a syn conformation adopted by N(1)-meA, which exhibits significant changes in the opening, roll and twist angles as compared to the normal A:T base pair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!