Akt / GSK3β / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity.

Neuropharmacology

Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, 11795, Egypt. Electronic address:

Published: September 2021

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates redox homeostasis of the cell through regulation of the antioxidant response element genes transcription. Nrf2 also regulates the antiapoptotic Bcl-2 gene. Nrf2 degradation and nuclear translocation is regulated by upstream kinases Akt and GSK3β. Glutamate excitotoxicity is a process of neuronal cells death due to excessive activation of glutamate receptors. Glutamate excitotoxicity participates in the pathophysiology of several acute and chronic neurological conditions. In addition, glutamate excitotoxicity interrupts the PI3K/Akt prosurvival pathway so GSK3β remains active. Active GSK3β increases Nrf2 degradation, decreases Nrf2 nuclear translocation and increases Nrf2 nuclear export which decreases the ARE genes transcription such as, SOD, GSH synthesis enzyme and HO-1. Also, Bcl-2 transcription decreases. Flurbiprofen is a COX inhibitor. Previous studies showed that it has a neuroprotective effect in neurodegeneration and in focal cerebral ischemia/reperfusion model. In our research we aimed to test the hypothesis that flurbiprofen may have a neuroprotective effect in a rat model of glutamate-induced excitotoxicity and this neuroprotection may occur through modulation of (Akt/GSK3β/Nrf2/HO-1) pathway. Rats were divided into 4 groups; control, MSG (2.5 g/Kg, i.p), low dose FB (5 mg/kg, i.p) and high dose FB (10 mg/kg, i.p). We found that low and high doses FB decreased COX-2, PGE, NO and MDA and increased SOD and GSH in brain compared to MSG group. High dose was more effective than low dose. Western blotting analysis in hippocampus tissue showed that high dose FB increased p-Akt, p-GSK3β, nuclear Nrf2 and HO-1 and decreased cytosolic Nrf2 level in comparison with MSG group. Immunohistochemical analysis in hippocampus and cerebral cortex showed that high dose FB increased Bcl-2 and decreased Bax compared to MSG group. In addition, FB increased the number of intact neurons in hippocampus areas and cerebral cortex neurons and showed an anxiolytic-like action in OF and EPM tests. These findings suggest that FB has a neuroprotective effect in glutamate-induced excitotoxicity model through reduction of the glutamate excitotoxicity damage and activation of the survival pathway. These may occur due to modulation the survival pathway (Akt/GSK3β/Nrf2/HO-1) and inhibition of COX-2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2021.108654DOI Listing

Publication Analysis

Top Keywords

glutamate excitotoxicity
20
high dose
16
msg group
12
nrf2
9
akt gsk3β
8
nrf2 ho-1
8
rat model
8
genes transcription
8
nrf2 degradation
8
nuclear translocation
8

Similar Publications

Mechanisms of cognitive impairment associated with cerebral infarction.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Cerebral infarction is a common type of stroke with high incidence and disability rates, and most patients experience varying degrees of cognitive impairment. The manifestations and severity of post-infarction cognitive impairment are influenced by multiple interacting factors, and its pathophysiological mechanisms are highly complex, involving pericyte degeneration, excessive generation of reactive oxygen species (ROS), overproduction of glutamate, and overactivation of autophagy. After cerebral infarction, abnormal pericyte function activates neuroinflammation and facilitates the entry of inflammatory mediators into the brain; detachment of pericytes from blood vessels disrupts the integrity of the blood-brain barrier.

View Article and Find Full Text PDF

Cisplatin is a chemotherapy drug used to treat different solid tumors, including ovarian, bladder, lung, and head and neck cancers. One of its significant side effects is ototoxicity, especially when high doses are required. Cisplatin-induced ototoxicity is associated with increased cochlear cell death resulting from DNA damage, caspase activation, oxidative stress, inflammation, and glutamate excitotoxicity.

View Article and Find Full Text PDF

Mitochondrial Ca uniporter b (MCUb) regulates neuronal Ca dynamics and resistance to ischemic stroke.

Cell Calcium

February 2025

Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA. Electronic address:

Mitochondrial Ca transport regulates many neuronal functions including synaptic transmission, ATP production, gene expression and neuronal survival. The mitochondrial Ca uniporter (MCU) is the core molecular component of the mitochondrial Ca uptake complex in the inner mitochondrial membrane. MCUb is a paralog of MCU that negatively regulates mitochondrial Ca uptake in the heart and the cells of the immune system.

View Article and Find Full Text PDF

KCTD20 suppression mitigates excitotoxicity in tauopathy patient organoids.

Neuron

February 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Excitotoxicity is a major pathologic mechanism in patients with tauopathy and other neurodegenerative diseases. However, the key neurotoxic drivers and the most effective strategies for mitigating these degenerative processes are unclear. Here, we show that glutamate treatment of induced pluripotent stem cell (iPSC)-derived cerebral organoids induces tau oligomerization and neurodegeneration and that these phenotypes are enhanced in organoids derived from tauopathy patients.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a devastating neurodegenerative disorder with a distinct loss of the nigrostriatal dopaminergic pathway. Despite the multiplicity in etiology, alterations that disrupt neuronal integrity can be traced back to defects in fundamental processes that typically run under mitochondrial inputs. Evidence indicates that mitochondrial activities are hierarchically integrated with the energetic performance of these organelles, so that an interesting perspective holds that interventions aimed at improving mitochondrial bioenergetics can potentially mitigate the severity of PD phenotype expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!