Inroads into Membrane Physiology through Transport Nanomachines.

J Mol Biol

Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemsitry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantiative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Electronic address:

Published: August 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633016PMC
http://dx.doi.org/10.1016/j.jmb.2021.167101DOI Listing

Publication Analysis

Top Keywords

inroads membrane
4
membrane physiology
4
physiology transport
4
transport nanomachines
4
inroads
1
physiology
1
transport
1
nanomachines
1

Similar Publications

Bioorthogonal chemistry has become a mainstay in chemical biology and is making inroads in the clinic with recent advances in protein targeting and drug release. Since the field's beginning, a major focus has been on designing bioorthogonal reagents with good selectivity, reactivity, and stability in complex biological environments. More recently, chemists have imbued reagents with new functionalities like click-and-release or light/enzyme-controllable reactivity.

View Article and Find Full Text PDF

Almost all biomembranes are constructed as lipid bilayers and, in almost all of these, the two opposing monolayers (leaflets) have distinct lipid compositions. This lipid asymmetry arises through the concerted action of a suite of energy-dependent enzymes that maintain living bilayers in a far-from-equilibrium steady-state. Recent discoveries reveal that lipid compositional asymmetry imparts biophysical asymmetries and that this dualistic organization may have major consequences for cellular physiology.

View Article and Find Full Text PDF

The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer's, viral pathogenesis, immune disorders, and cancer progression.

View Article and Find Full Text PDF

The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms.

View Article and Find Full Text PDF

Preterm birth is the principal contributor to neonatal death and morbidity worldwide. We previously described a plasma cell-free RNA panel that between 16 and 20 weeks of pregnancy had potential to predict spontaneous preterm birth (sPTB) ≤ 32 weeks caused by preterm labor (PTL) or preterm premature rupture of membranes (PPROM). The present study had three objectives: estimate the RNA panel prognostic accuracy for PTL/PPROM ≤ 32 weeks in a larger series; improve accuracy by adding clinical characteristics to the predictive model; and examine the association of the RNA panel with preeclampsia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!