Mechanical environment has a crucial role in our organism at the different levels, ranging from cells to tissues and our own organs. This regulatory role is especially relevant for bones, given their importance as load-transmitting elements that allow the movement of our body as well as the protection of vital organs from load impacts. Therefore bone, as living tissue, is continuously adapting its properties, shape and repairing itself, being the mechanical loads one of the main regulatory stimuli that modulate this adaptive behavior. Here we review some key results of bone mechanobiology from computational models, describing the effect that changes associated to the mechanical environment induce in bone response, implant design and scaffold-driven bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2021.116032 | DOI Listing |
Chem Commun (Camb)
January 2025
Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
Functional materials, possessing specific properties and performing particular functions beyond their mechanical or structural roles, are the foundation of modern matter science including energy, environment, and quantum sciences. The atomic and electronic structures of these materials can be significantly altered by external stimuli such as pressure. High-pressure techniques have been extensively utilized to deepen our understanding of structure-property relationships of materials, while also enabling emergent or enhanced properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.
View Article and Find Full Text PDFAdv Mater
January 2025
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.
View Article and Find Full Text PDFTheranostics
January 2025
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Chemistry, University of Wyoming, Laramie, WY, United States.
Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!