Introduction: Commercially available serological assays for SARS-CoV-2 detect antibodies to either the nucleocapsid or spike protein. Here we compare the performance of the Beckman-Coulter SARS-CoV-2 spike IgG assay to that of the Abbott SARS-CoV-2 nucleocapsid IgG and Roche Anti-SARS-CoV-2 nucleocapsid total antibody assays. In addition, we document the trend in nucleocapsid and spike antibodies in sequential samples collected from convalescent plasma donors.
Methods: Plasma or serum samples from 20 individual SARS-CoV-2 RT-PCR-positive inpatients (n = 172), 20 individual convalescent donors with a previous RT-PCR-confirmed SARS-CoV-2 infection (n = 20), were deemed positive SARS-CoV-2 samples. RT-PCR-negative inpatients (n = 24), and 109 pre-SARS-CoV-2 samples were determined to be SARS-CoV-2 negative. Samples were assayed by the Abbott, Roche, and Beckman assays.
Results: All three assays demonstrated 100% specificity. Abbott, Beckman, and Roche platforms had sensitivities of 98%, 93%, and 90% respectively, with the difference in sensitivity attributed primarily to samples from immunocompromised patients. After the exclusion of samples immunocompromised patients, all assays exhibited ≥ 95% sensitivity. In sequential samples collected from the same individuals, the Roche nucleocapsid antibody assay demonstrated continually increasing signal intensity, with maximal values observed at the last time point examined. In contrast, the Beckman spike IgG antibody signal peaked between 14 and 28 days post positive SARS-CoV-2 PCR and steadily declined in subsequent samples. Subsequent collections 51-200 days (median of 139 days) post positive SARS-CoV-2 RT-PCR from five inpatients and five convalescent donors revealed that spike and nucleocapsid antibodies remained detectable for several months after confirmed infection.
Conclusions: The three assays are sensitive and specific for SARS-CoV-2 antibodies. Nucleocapsid and spike antibodies were detectable for up to 200 days post-positive SARS-CoV-2 PCR but demonstrated markedly different trends in signal intensity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188801 | PMC |
http://dx.doi.org/10.1016/j.clinbiochem.2021.05.011 | DOI Listing |
J Infect Public Health
January 2025
Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran. Electronic address:
Background: Given the limited available data about to the number of vaccine doses administered over an extended time in Iran, the immune status of vaccinated individuals and any potential disparities in this regard among those who received different numbers of vaccine doses remain unknown. Therefore, this study aimed to assess humoral immunity of individuals who received different doses of the COVID-19 vaccines in Iran.
Methods: This study was conducted from February, 2022 to December 2023 including 605 vaccinated subjects.
Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.
View Article and Find Full Text PDFNat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland.
Background/objectives: The impact of vaccines against SARS-CoV-2 on the immunity of patients with multiple sclerosis (PwMS) is still not fully known. Further clarification could help address medical concerns related to the use of immunosuppressive and immunomodulatory medications, known as disease-modifying therapies (DMTs), in PwMS, as well as ensure adequate protection against severe outcomes of COVID-19. Therefore, the aim of our study was to evaluate the humoral and cellular immune response in PwMS treated with DMTs.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Infectious Diseases Research Center of Niigata University in Myanmar, Niigata University, Niigata 950-8510, Japan.
Background: This study aimed to assess the antibody response to SARS-CoV-2 vaccines among healthcare workers (HCWs) from multiple outpatient clinics in Japan, examining the effects of baseline characteristics (e.g., sex, age, underlying condition, smoking history, occupation) and prior infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!