Thioredoxin reductase (TrxR) is a central component in the thioredoxin system by involving in catalyzing the reduction of thioredoxin, which is critical for organism survival. Because this system is essential, it is a promising target for novel antimicrobial agents. Herein, we solved the 1.9 Å high-resolution structure of TrxR from Acinetobacter baumannii Thioredoxin reductase (AbTrxR), which is a Gram-negative, pathogenic bacterium and a drug-resistant superbug. AbTrxR was cofactor-free and formed a dimer in solution. AbTrxR contained a longer dimerization loop2 and a shorter β -β connecting loop than other TrxRs. AbTrxR cofactor-free form exhibited a flavin-oxidizing (FO) conformation, whose NADPH domain was located close to the dimeric interface. This structural information might be helpful for development of new antibiotic agents targeting superbugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!