Time-resolved fluorescence spectrometry is a highly valuable technological tool to detect and characterize mitochondrial metabolic oxidative changes by means of endogenous fluorescence. Here, we describe detection and measurement of endogenous mitochondrial flavin fluorescence directly in living cardiac cells using fluorescence lifetime imaging microscopy (FLIM) after excitation with 473 nm picoseconds (ps) laser. Time-correlated single photon counting (TCSPC) method is employed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1262-0_26 | DOI Listing |
Nat Commun
January 2025
Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Imbalances in gut microbiota and their metabolites have been implicated in osteoporotic disorders. Trimethylamine-n-oxide (TMAO), a metabolite of L-carnitine produced by gut microorganisms and flavin-containing monooxygenase-3, is known to accelerate tissue metabolism and remodeling; however, its role in bone loss remained unexplored. This study investigates the relationship between gut microbiota dysbiosis, TMAO production, and osteoporosis development.
View Article and Find Full Text PDFJ Pharmacol Sci
December 2024
Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan. Electronic address:
TND1128, a 5-deazaflavin derivative, is a drug with self-redox ability. We examined the effect of TND1128 on the level of mitochondrial membrane potential (ΔΨ), which is the most critical motive power for the biosynthesis of ATP. We prepared brain slices from mice pretreated with TND1128 (0.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China. Electronic address:
Riboflavin kinase (RFK) is essential in riboflavin metabolism, converting riboflavin to flavin mononucleotide (FMN), which is further processed to flavin adenine dinucleotide (FAD). While RFK enhances macrophage phagocytosis of Listeria monocytogenes, its role in macrophage polarization is not well understood. Our study reveals that RFK deficiency impairs M(IFN-γ) and promotes M(IL-4) polarization, both in vitro and in vivo.
View Article and Find Full Text PDFTransl Breast Cancer Res
October 2024
Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: The redox status of nicotinamide adenine dinucleotide (NAD; including oxidized form NAD and reduced form NADH) plays key roles in both health and disease and has been actively studied to develop cancer biomarkers and therapeutic strategies. With the optical redox imaging (ORI) technique, we have been investigating the relationship of NADH redox status, reactive oxygen species (ROS), and invasiveness in breast cancer cell cultures, and have associated higher invasiveness with more oxidized NADH redox state. However, the cell cultures may have phenotypic drift and metabolic change with increased passage numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!