Mesenchymal stem cells (MSCs) are self-renewing, multi-potent heterogeneous stem cells that display strong tissue protective and restorative properties by differentiating into cells of the mesodermal lineages. In addition to multi-lineage differentiation capacity, MSCs play important roles in regulating immune responses, inflammation, and tissue regeneration. MSCs play a role in the outcome of the pathogenesis of several infectious diseases. A unique subset of MSCs accumulates in secondary lymphoid organs during malaria disease progression. These MSCs counteract the capacity of malaria parasites to subvert activating co-stimulatory molecules and to regulate expression of negative co-stimulatory molecules on T lymphocytes. Consequently, MSCs have the capacity to restore the functions of CD34 haematopoietic cells and CD4 and CD8 T cells during malaria infection. These observations suggest that cell-based therapeutics for intervention in malaria may be useful in achieving sterile clearance and preventing disease reactivation. In addition, MSCs provide host protection against malaria by reprogramming erythropoiesis through accelerated formation of colony-forming-units-erythroid (CFU-E) cells in the bone marrow. These findings suggest that MSCs are positive regulators of erythropoiesis, making them attractive targets for treatment of malarial anemia. MSC-based therapies, unlike anti-malarial drugs, display therapeutic effects by targeting a large variety of cellular processes rather than a single pathway. In the present review we focus on these recent research findings and discuss clinical applications of MSC-based therapies for malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196918 | PMC |
http://dx.doi.org/10.1007/s12015-021-10191-1 | DOI Listing |
Best Pract Res Clin Haematol
December 2024
Departments of Pathology, Biomedical Engineering, and Macromolecular Science, Case Western Reserve University, USA. Electronic address:
Arnold Caplan was the father of MSC, mesenchymal stem cells. His pioneering efforts have led to significant advances in the utilization of mesenchymal stem cells for the treatment of a wide variety of clinical diseases. This reflection provides some insight into Arnold's commitment to education and research regarding mesenchymal stem cells.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2024
Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK.
Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2024
Mellen Center, Neurological Institute, Cleveland Clinic Foundation, United States.
Mesenchymal stem/stromal cells (MSC) have been transplanted for therapeutic purposes with inconsistent results. MSC preparations are heterogeneous, and this person-to-person heterogeneity may account for the variable clinical outcomes. Additionally, the mechanisms of therapeutic action for MSC are unclear which confounds attempts to understand and identify factors that may account for variable clinical results.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2024
Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
The widespread adoption of chimeric antigen receptor (CAR) T-cell therapy has been limited by complex, resource-intensive manufacturing processes. This review discusses the latest innovations aiming to improve and streamline CAR T-cell production across key steps like T-cell activation, genetic modification, expansion, and scaling. Promising techniques highlighted include generating CAR T cells from non-activated lymphocytes to retain a stem-like phenotype and function, non-viral gene transfer leveraging platforms like transposon and CRISPR, all-in-one fully automated bioreactors like the CliniMACS Prodigy and the Lonza Cocoon, rapid CAR T-cell manufacturing via abbreviating or eliminating ex vivo T-cell culture, implementing decentralized point-of-care automated manufacturing platforms, and optimizing centralized bioreactor infrastructure integrating end-to-end automation.
View Article and Find Full Text PDFCancer Lett
March 2025
School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China. Electronic address:
The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!