Synthesis and potent antimicrobial activity of novel coumarylthiazole α-aminophosphonates derivatives.

Mol Divers

Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of Chemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, BP 12, 23000, Annaba, Algeria.

Published: April 2022

Herein, we reported a novel series of α-aminophosphonates derivatives (IV)a-m bearing an important pharmacophore coumarylthiazole moiety. All the new compounds have been synthesized via Kabachnik-Fields reaction under ultrasonic irradiation. The products were obtained in good yield with a simple workup and were confirmed using various spectroscopic methods. All these compounds (IV)a-m were screened for their in vitro for antimicrobial activity against thirteen Gram-negative bacteria and five Gram-positive bacteria and Candida albicans strains. The results showed that all the synthesized compounds exhibited moderate antibacterial activities against both references and multidrug-resistant and antifungal strains. The compound (IV)e showed the highest activities against all pathogens of the tested microbial strains with MIC of 0.125 μg/mL. The compounds (IV)h, (IV)f, (IV)b, and (IV)d exhibited moderate and promising activities with MIC of 0.125 μg/mL. Structure-activity relationship revealed that inhibitory activity of the synthesized compounds is related to the type of the substituted group on phenyl rings, and these results showed that the electron-donating groups at ortho and para positions have a high relationship increasing antimicrobial activities than the electron-withdrawing groups. These results confirm that coumarylthiazole α-aminophosphonates compounds can be potential antimicrobial drugs candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-021-10242-2DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
8
coumarylthiazole α-aminophosphonates
8
synthesized compounds
8
exhibited moderate
8
compounds
6
synthesis potent
4
antimicrobial
4
potent antimicrobial
4
activity novel
4
novel coumarylthiazole
4

Similar Publications

Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.

View Article and Find Full Text PDF

Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant .

Microbiol Spectr

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .

View Article and Find Full Text PDF

is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!