Raman spectroscopy can provide a rapid, label-free, nondestructive measurement of the chemical fingerprint of a sample and has shown potential for cancer screening and diagnosis. Here we report a protocol for Raman microspectroscopic analysis of different exfoliative cytology samples (cervical, oral and lung), covering sample preparation, spectral acquisition, preprocessing and data analysis. The protocol takes 2 h 20 min for sample preparation, measurement and data preprocessing and up to 8 h for a complete analysis. A key feature of the protocol is that it uses the same sample preparation procedure as commonly used in diagnostic cytology laboratories (i.e., liquid-based cytology on glass slides), ensuring compatibility with clinical workflows. Our protocol also covers methods to correct for the spectral contribution of glass and sample pretreatment methods to remove contaminants (such as blood and mucus) that can obscure spectral features in the exfoliated cells and lead to variability. The protocol establishes a standardized clinical routine allowing the collection of highly reproducible data for Raman spectral cytopathology for cancer diagnostic applications for cervical and lung cancer and for monitoring suspicious lesions for oral cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-021-00559-5DOI Listing

Publication Analysis

Top Keywords

sample preparation
12
raman spectral
8
spectral cytopathology
8
cytopathology cancer
8
cancer diagnostic
8
diagnostic applications
8
cancer
5
sample
5
protocol
5
raman
4

Similar Publications

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!