Kindlin-2 in Sertoli cells is essential for testis development and male fertility in mice.

Cell Death Dis

Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.

Published: June 2021

Kindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196014PMC
http://dx.doi.org/10.1038/s41419-021-03885-4DOI Listing

Publication Analysis

Top Keywords

sertoli cells
16
kindlin-2 sertoli
12
kindlin-2
10
cells essential
8
development male
8
loss kindlin-2
8
lats1 interaction
8
interaction yap
8
yap
5
cells
4

Similar Publications

Crude oil contamination has been shown to impair reproduction in aquatic animals through carcinogenic and genotoxic properties. Here, we assessed the endocrine-disrupting function of crude oil on male reproductive system based on testicular histology, sex steroid hormones, and fertility endpoints in adult male goldfish (Carassius auratus), which were exposed to 0.02- to 2-mg/L crude oil for 21 days (Experiment #1) or to 5- to 250-mg/L crude oil for 9 days (Experiment #2).

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.

View Article and Find Full Text PDF

Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.

View Article and Find Full Text PDF

Exploring the interplay between inflammation and male fertility.

FEBS J

December 2024

UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.

Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.

View Article and Find Full Text PDF

Identification of crucial LncRNAs associated with testicular development and LOC108635509 as a potential regulator in black goat spermatogenesis.

BMC Genomics

December 2024

Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.

The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!