Tryptophan catabolism is dysregulated in leiomyomas.

Fertil Steril

Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California. Electronic address:

Published: October 2021

Objective: To determine the expression and functional roles of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) in leiomyoma.

Design: Experimental study.

Setting: Academic research laboratory.

Patient(s): Women undergoing hysterectomy for leiomyoma.

Intervention(s): Blockade of IDO1 and TDO2.

Main Outcome Measure(s): Expression of IDO1 and TDO2 in leiomyoma and the effects of their inhibitors on the extracellular matrix.

Result(s): Leiomyoma expressed significantly higher levels of IDO1 and TDO2 messenger ribonucleic acid (mRNA; 60.3%, 35/58 pairs and 98.3%, 57/58 pairs, respectively) and protein (54%, 27/50 pairs and 92%, 46/50 pairs, respectively) as well as the enzyme activity marker kynurenine (78.3%, 36/46 pairs for IDO1/TDO2) compared with levels in matched myometrium. The expression of TDO2 but not IDO1 mRNA was significantly higher in fibroids from African American compared with that in Caucasian and Hispanic patients. The TDO2 but not the IDO1 protein and mRNA levels were more abundant in fibroids bearing the MED12 mutation compared with results in wild-type leiomyomas. Treatment of leiomyoma smooth muscle cell and myometrial smooth muscle cell spheroids with the TDO2 inhibitor 680C91 but not the IDO1 inhibitor epacadostat significantly repressed cell proliferation and the expression of collagen type I (COL1A1) and type III (COL3A1) in a dose-dependent manner; these effects were more pronounced in leiomyoma smooth muscle cells compared with myometrial smooth muscle cell spheroids.

Conclusion(s): These results underscore the physiological significance of the tryptophan degradation pathway in the pathogenesis of leiomyomas and the potential utility of anti-TDO2 drugs for treatment of leiomyomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787760PMC
http://dx.doi.org/10.1016/j.fertnstert.2021.05.081DOI Listing

Publication Analysis

Top Keywords

smooth muscle
16
muscle cell
12
ido1 tdo2
8
tdo2 ido1
8
leiomyoma smooth
8
myometrial smooth
8
ido1
7
tdo2
6
pairs
5
tryptophan catabolism
4

Similar Publications

Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

With the impending 'retirement' of bronchial thermoplasty (BT) for the treatment of patients with asthma, there is much to learn from this real-world experiment that will help us develop more effective future therapies with the same primary target i.e., airway smooth muscle (ASM) remodelling.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!